dyadic solenoid - definitie. Wat is dyadic solenoid
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is dyadic solenoid - definitie

RATIONAL NUMBER WHOSE DENOMINATOR IS A POWER OF TWO
Dyadic solenoid; Dyadic fraction; Dyadic rational number; Dyadic rationals; Dyadic numbers
  • Real numbers with no unusually-accurate dyadic rational approximations. The red circles surround numbers that are approximated within error <math>\tfrac16/2^i</math> by <math>n/2^i</math>. For numbers in the fractal [[Cantor set]] outside the circles, all dyadic rational approximations have larger errors.
  • alt=Unit interval subdivided into 1/128ths
  • Dyadic rational approximations to the [[square root of 2]] (<math>\sqrt{2}\approx 1.4142</math>), found by rounding to the nearest smaller integer multiple of <math>1/2^i</math> for <math>i=0,1,2,\dots</math> The height of the pink region above each approximation is its error.

Dyadic rational         
In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not.
solenoid         
  • Examples of irregular solenoids (a) sparse solenoid, (b) varied pitch solenoid, (c) non-cylindrical solenoid
  • Ampère's law]] can be applied to the solenoid
  • Ampèrian loops]] labelled ''a'', ''b'', and ''c''. Integrating over path ''c'' demonstrates that the magnetic field inside the solenoid must be radially uniform.
TYPE OF ELECTROMAGNET WITH CYLINDRICAL CONDUCTOR
Solenoids; Solenoid (electricity); Solenoid coil; Solonoid; Solenoid (physics); Electromechanical solenoid
['s?l?n??d, 's??l-]
¦ noun a cylindrical coil of wire acting as a magnet when carrying electric current.
Derivatives
solenoidal adjective
Origin
C19: from Fr. solenoide, from Gk solen 'channel, pipe'.
Solenoid         
  • Examples of irregular solenoids (a) sparse solenoid, (b) varied pitch solenoid, (c) non-cylindrical solenoid
  • Ampère's law]] can be applied to the solenoid
  • Ampèrian loops]] labelled ''a'', ''b'', and ''c''. Integrating over path ''c'' demonstrates that the magnetic field inside the solenoid must be radially uniform.
TYPE OF ELECTROMAGNET WITH CYLINDRICAL CONDUCTOR
Solenoids; Solenoid (electricity); Solenoid coil; Solonoid; Solenoid (physics); Electromechanical solenoid
The ideal solenoid is a system of circular currents of uniform direction, equal, parallel, of equal diameter of circle, and with their centers lying on the same straight line, which line is perpendicular to their planes. Fig. 305. EXPERIMENTAL SOLENOID. The simple solenoid as constructed of wire, is a helical coil, of uniform diameter, so as to represent a cylinder. After completing the coil one end of the wire is bent back and carried through the centre of the coil, bringing thus both ends out at the same end. The object of doing this is to cause this straight return member to neutralize the longitudinal component of the helical turns. This it does approximately so as to cause the solenoid for its practical action to correspond with the ideal solenoid. Instead of carrying one end of the wire through the centre of the coil as just described, both ends may be bent back and brought together at the centre. A solenoid should always have this neutralization of the longitudinal component of the helices provided for; otherwise it is not a true solenoid. Solenoids are used in experiments to represent magnets and to study and illustrate their laws. When a current goes through them they acquire polarity, attract iron, develop lines of force and act in general like magnets. A solenoid is also defined as a coil of insulated wire whose length is not small as compared with its diameter.

Wikipedia

Dyadic rational

In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any real number.

The sum, difference, or product of any two dyadic rational numbers is another dyadic rational number, given by a simple formula. However, division of one dyadic rational number by another does not always produce a dyadic rational result. Mathematically, this means that the dyadic rational numbers form a ring, lying between the ring of integers and the field of rational numbers. This ring may be denoted Z [ 1 2 ] {\displaystyle \mathbb {Z} [{\tfrac {1}{2}}]} .

In advanced mathematics, the dyadic rational numbers are central to the constructions of the dyadic solenoid, Minkowski's question-mark function, Daubechies wavelets, Thompson's group, Prüfer 2-group, surreal numbers, and fusible numbers. These numbers are order-isomorphic to the rational numbers; they form a subsystem of the 2-adic numbers as well as of the reals, and can represent the fractional parts of 2-adic numbers. Functions from natural numbers to dyadic rationals have been used to formalize mathematical analysis in reverse mathematics.